mirror of
https://github.com/LearnOpenGL-CN/LearnOpenGL-CN.git
synced 2025-08-23 04:35:28 +08:00
Merge pull request #118 from hyc0612/patch-3
Update 04 Normal Mapping.md
This commit is contained in:
@@ -28,7 +28,8 @@
|
||||
|
||||
为使法线贴图工作,我们需要为每个fragment提供一个法线。像diffuse贴图和specular贴图一样,我们可以使用一个2D纹理来储存法线数据。2D纹理不仅可以储存颜色和光照数据,还可以储存法线向量。这样我们可以从2D纹理中采样得到特定纹理的法线向量。
|
||||
|
||||
由于法线向量是个几何工具,而纹理通常只用于储存颜色信息,用纹理储存法线向量不是非常直接。如果你想一想,就会知道纹理中的颜色向量用r、g、b元素代表一个3D向量。类似的我们也可以将法线向量的x、y、z元素储存到纹理中,代替颜色的r、g、b元素。法线向量的范围在-1到1之间,所以我们先要将其映射到0到1的范围:
|
||||
由于法线向量是个几何工具,而纹理通常只用于储存颜色信息,用纹理储存法线向量不是非常直
|
||||
。如果你想一想,就会知道纹理中的颜色向量用r、g、b元素代表一个3D向量。类似的我们也可以将法线向量的x、y、z元素储存到纹理中,代替颜色的r、g、b元素。法线向量的范围在-1到1之间,所以我们先要将其映射到0到1的范围:
|
||||
|
||||
|
||||
```c++
|
||||
@@ -113,7 +114,7 @@ $$
|
||||
(E_{2x}, E_{2y}, E_{2z}) = \Delta U_2(T_x, T_y, T_z) + \Delta V_2(B_x, B_y, B_z)
|
||||
$$
|
||||
|
||||
\(E\)是两个向量位置的差,\(\Delta U\)和\(\Delta V\)是纹理坐标的差。然后我们得到两个未知数(切线*T*和副切线*B*)和两个等式。你可能想起你的代数课了,这是让我们去接\(T\)和\(B\)。
|
||||
\(E\)是两个向量位置的差,\(\Delta U\)和\(\Delta V\)是纹理坐标的差。然后我们得到两个未知数(切线*T*和副切线*B*)和两个等式。你可能想起你的代数课了,这是让我们去解\(T\)和\(B\)。
|
||||
|
||||
上面的方程允许我们把它们写成另一种格式:矩阵乘法
|
||||
|
||||
@@ -127,7 +128,7 @@ $$
|
||||
\begin{bmatrix} \Delta U_1 & \Delta V_1 \\ \Delta U_2 & \Delta V_2 \end{bmatrix}^{-1} \begin{bmatrix} E_{1x} & E_{1y} & E_{1z} \\ E_{2x} & E_{2y} & E_{2z} \end{bmatrix} = \begin{bmatrix} T_x & T_y & T_z \\ B_x & B_y & B_z \end{bmatrix}
|
||||
$$
|
||||
|
||||
这样我们就可以解出\(T\)和\(B\)了。这需要我们计算出delta纹理坐标矩阵的拟阵。我不打算讲解计算逆矩阵的细节,但大致是把它变化为,1除以矩阵的行列式,再乘以它的共轭矩阵。
|
||||
这样我们就可以解出\(T\)和\(B\)了。这需要我们计算出delta纹理坐标矩阵的逆矩阵。我不打算讲解计算逆矩阵的细节,但大致是把它变化为,1除以矩阵的行列式,再乘以它的共轭矩阵。
|
||||
|
||||
$$
|
||||
\begin{bmatrix} T_x & T_y & T_z \\ B_x & B_y & B_z \end{bmatrix} = \frac{1}{\Delta U_1 \Delta V_2 - \Delta U_2 \Delta V_1} \begin{bmatrix} \Delta V_2 & -\Delta V_1 \\ -\Delta U_2 & \Delta U_1 \end{bmatrix} \begin{bmatrix} E_{1x} & E_{1y} & E_{1z} \\ E_{2x} & E_{2y} & E_{2z} \end{bmatrix}
|
||||
|
Reference in New Issue
Block a user