mirror of
https://github.com/LearnOpenGL-CN/LearnOpenGL-CN.git
synced 2025-08-23 04:35:28 +08:00
Replace all the references with relative links
This commit is contained in:
@@ -84,7 +84,7 @@ void main()
|
||||
|
||||
我们可以说,上个部分那个朝向正y的法线贴图错误的贴到了表面上。法线贴图被定义在切线空间中,所以一种解决问题的方式是计算出一种矩阵,把法线从切线空间变换到一个不同的空间,这样它们就能和表面法线方向对齐了:法线向量都会指向正y方向。切线空间的一大好处是我们可以为任何类型的表面计算出一个这样的矩阵,由此我们可以把切线空间的z方向和表面的法线方向对齐。
|
||||
|
||||
这种矩阵叫做TBN矩阵这三个字母分别代表tangent、bitangent和normal向量。这是建构这个矩阵所需的向量。要建构这样一个把切线空间转变为不同空间的变异矩阵,我们需要三个相互垂直的向量,它们沿一个表面的法线贴图对齐于:上、右、前;这和我们在[摄像机教程](http://learnopengl-cn.readthedocs.org/zh/latest/01%20Getting%20started/09%20Camera/)中做的类似。
|
||||
这种矩阵叫做TBN矩阵这三个字母分别代表tangent、bitangent和normal向量。这是建构这个矩阵所需的向量。要建构这样一个把切线空间转变为不同空间的变异矩阵,我们需要三个相互垂直的向量,它们沿一个表面的法线贴图对齐于:上、右、前;这和我们在[摄像机教程](../01 Getting started/09 Camera.md)中做的类似。
|
||||
|
||||
已知上向量是表面的法线向量。右和前向量是切线(Tagent)和副切线(Bitangent)向量。下面的图片展示了一个表面的三个向量:
|
||||
|
||||
|
@@ -65,7 +65,7 @@ while(...) // 游戏循环
|
||||
}
|
||||
```
|
||||
|
||||
对于每一个片段我们需要储存的数据有:一个**位置**向量、一个**法**向量,一个**颜色**向量,一个镜面强度值。所以我们在几何处理阶段中需要渲染场景中所有的对象并储存这些数据分量到G缓冲中。我们可以再次使用**多渲染目标(Multiple Render Targets)**来在一个渲染处理之内渲染多个颜色缓冲,在之前的[泛光教程](http://learnopengl-cn.readthedocs.org/zh/latest/05%20Advanced%20Lighting/07%20Bloom/)中我们也简单地提及了它。
|
||||
对于每一个片段我们需要储存的数据有:一个**位置**向量、一个**法**向量,一个**颜色**向量,一个镜面强度值。所以我们在几何处理阶段中需要渲染场景中所有的对象并储存这些数据分量到G缓冲中。我们可以再次使用**多渲染目标(Multiple Render Targets)**来在一个渲染处理之内渲染多个颜色缓冲,在之前的[泛光教程](07 Bloom.md)中我们也简单地提及了它。
|
||||
|
||||
对于几何渲染处理阶段,我们首先需要初始化一个帧缓冲对象,我们很直观的称它为`gBuffer`,它包含了多个颜色缓冲和一个单独的深度渲染缓冲对象(Depth Renderbuffer Object)。对于位置和法向量的纹理,我们希望使用高精度的纹理(每分量16或32位的浮点数),而对于反照率和镜面值,使用默认的纹理(每分量8位浮点数)就够了。
|
||||
|
||||
@@ -224,7 +224,7 @@ void main()
|
||||
|
||||
你可以在以下位置找到Demo的完整[源代码](http://learnopengl.com/code_viewer.php?code=advanced-lighting/deferred),和几何渲染阶段的[顶点](http://learnopengl.com/code_viewer.php?code=advanced-lighting/deferred_geometry&type=vertex)和[片段](http://learnopengl.com/code_viewer.php?code=advanced-lighting/deferred_geometry&type=fragment)着色器,还有光照渲染阶段的[顶点](http://learnopengl.com/code_viewer.php?code=advanced-lighting/deferred&type=vertex)和[片段](http://learnopengl.com/code_viewer.php?code=advanced-lighting/deferred&type=vertex)着色器。
|
||||
|
||||
延迟着色法的其中一个缺点就是它不能进行[混合](http://learnopengl-cn.readthedocs.org/zh/latest/04%20Advanced%20OpenGL/03%20Blending/)(Blending),因为G缓冲中所有的数据都是从一个单独的片段中来的,而混合需要对多个片段的组合进行操作。延迟着色法另外一个缺点就是它迫使你对大部分场景的光照使用相同的光照算法,你可以通过包含更多关于材质的数据到G缓冲中来减轻这一缺点。
|
||||
延迟着色法的其中一个缺点就是它不能进行[混合](../04 Advanced OpenGL/03 Blending.md)(Blending),因为G缓冲中所有的数据都是从一个单独的片段中来的,而混合需要对多个片段的组合进行操作。延迟着色法另外一个缺点就是它迫使你对大部分场景的光照使用相同的光照算法,你可以通过包含更多关于材质的数据到G缓冲中来减轻这一缺点。
|
||||
|
||||
为了克服这些缺点(特别是混合),我们通常分割我们的渲染器为两个部分:一个是延迟渲染的部分,另一个是专门为了混合或者其他不适合延迟渲染管线的着色器效果而设计的的正向渲染的部分。为了展示这是如何工作的,我们将会使用正向渲染器渲染光源为一个小立方体,因为光照立方体会需要一个特殊的着色器(会输出一个光照颜色)。
|
||||
|
||||
|
@@ -55,7 +55,7 @@ SSAO需要获取几何体的信息,因为我们需要一些方式来确定一
|
||||
|
||||
!!! Important
|
||||
|
||||
在这个教程中,我们将会在一个简化版本的延迟渲染器([延迟着色法](http://learnopengl-cn.readthedocs.org/zh/latest/05%20Advanced%20Lighting/08%20Deferred%20Shading/)教程中)的基础上实现SSAO,所以如果你不知道什么是延迟着色法,请先读完那篇教程。
|
||||
在这个教程中,我们将会在一个简化版本的延迟渲染器([延迟着色法](08 Deferred Shading.md)教程中)的基础上实现SSAO,所以如果你不知道什么是延迟着色法,请先读完那篇教程。
|
||||
|
||||
由于我们已经有了逐片段位置和法线数据(G缓冲中),我们只需要更新一下几何着色器,让它包含片段的线性深度就行了。回忆我们在深度测试那一节学过的知识,我们可以从`gl_FragCoord.z`中提取线性深度:
|
||||
|
||||
@@ -114,7 +114,7 @@ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
|
||||
## 法向半球
|
||||
|
||||
我们需要沿着表面法线方向生成大量的样本。就像我们在这个教程的开始介绍的那样,我们想要生成形成半球形的样本。由于对每个表面法线方向生成采样核心非常困难,也不合实际,我们将在[切线空间](http://learnopengl-cn.readthedocs.org/zh/latest/05%20Advanced%20Lighting/04%20Normal%20Mapping/)(Tangent Space)内生成采样核心,法向量将指向正z方向。
|
||||
我们需要沿着表面法线方向生成大量的样本。就像我们在这个教程的开始介绍的那样,我们想要生成形成半球形的样本。由于对每个表面法线方向生成采样核心非常困难,也不合实际,我们将在[切线空间](04 Normal Mapping.md)(Tangent Space)内生成采样核心,法向量将指向正z方向。
|
||||
|
||||

|
||||
|
||||
|
Reference in New Issue
Block a user