From f837a85526d9f878c220a0c179b19a3c662e381d Mon Sep 17 00:00:00 2001 From: Meow J Date: Sat, 13 May 2017 00:54:24 +0800 Subject: [PATCH] Fix #70 --- docs/05 Advanced Lighting/04 Normal Mapping.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/05 Advanced Lighting/04 Normal Mapping.md b/docs/05 Advanced Lighting/04 Normal Mapping.md index 750ee29..a9bdff0 100644 --- a/docs/05 Advanced Lighting/04 Normal Mapping.md +++ b/docs/05 Advanced Lighting/04 Normal Mapping.md @@ -127,7 +127,7 @@ $$ \begin{bmatrix} \Delta U_1 & \Delta V_1 \\ \Delta U_2 & \Delta V_2 \end{bmatrix}^{-1} \begin{bmatrix} E_{1x} & E_{1y} & E_{1z} \\ E_{2x} & E_{2y} & E_{2z} \end{bmatrix} = \begin{bmatrix} T_x & T_y & T_z \\ B_x & B_y & B_z \end{bmatrix} $$ -这样我们就可以解出\(T\)和\(B\)了。这需要我们计算出delta纹理坐标矩阵的拟阵。我不打算讲解计算逆矩阵的细节,但大致是把它变化为,1除以矩阵的行列式,再乘以它的共轭矩阵。 +这样我们就可以解出\(T\)和\(B\)了。这需要我们计算出delta纹理坐标矩阵的拟阵。我不打算讲解计算逆矩阵的细节,但大致是把它变化为,1除以矩阵的行列式,再乘以它的伴随矩阵(Adjugate Matrix)。 $$ \begin{bmatrix} T_x & T_y & T_z \\ B_x & B_y & B_z \end{bmatrix} = \frac{1}{\Delta U_1 \Delta V_2 - \Delta U_2 \Delta V_1} \begin{bmatrix} \Delta V_2 & -\Delta V_1 \\ -\Delta U_2 & \Delta U_1 \end{bmatrix} \begin{bmatrix} E_{1x} & E_{1y} & E_{1z} \\ E_{2x} & E_{2y} & E_{2z} \end{bmatrix}