diff --git a/docs/05 Advanced Lighting/02 Gamma Correction.md b/docs/05 Advanced Lighting/02 Gamma Correction.md index 440fb76..67c4777 100644 --- a/docs/05 Advanced Lighting/02 Gamma Correction.md +++ b/docs/05 Advanced Lighting/02 Gamma Correction.md @@ -16,7 +16,7 @@ ![](http://learnopengl.com/img/advanced-lighting/gamma_correction_brightness.png) -第一行是人眼所感知到的正常的灰阶,亮度要增加一倍(比如从0.1到0.2)你才会感觉比原来变亮了一倍(译注:这里的意思是说比如一个东西的亮度0.3,让人感觉它比原来变亮一倍,那么现在这个亮度应该成为0.6,而不是0.4,也就是说人眼感知到的亮度的变化并非线性均匀分布的。问题的关键在于这样的一倍相当于一个亮度级,例如假设0.1、0.2、0.4、0.8是我们定义的四个亮度级别,在0.1和0.2之间人眼只能识别出0.15这个中间级,而虽然0.4到0.8之间的差距更大,这个区间人眼也只能识别出一个颜色)。然而,当我们谈论光的物理亮度,也就是光子的数量的多少的时候,底部的灰阶显示出的才是这时讨论的亮度。底部的灰阶显示出的是双倍的亮度所返回的物理亮度(译注:这里亮度是指光子数量和正相关的亮度,即物理亮度,前面讨论的是人的感知亮度;物理亮度和感知亮度的区别在于,物理亮度基于光子数量,感知亮度基于人的感觉,比如第二个灰阶里亮度0.1的光子数量是0.2的二分之一),但是由于这与我们的眼睛感知亮度不完全一致(对比较暗的颜色变化更敏感),所以它看起来很奇怪。 +第一行是人眼所感知到的正常的灰阶,亮度要增加一倍(比如从0.1到0.2)你才会感觉比原来变亮了一倍(译注:这里的意思是说比如一个东西的亮度0.3,让人感觉它比原来变亮一倍,那么现在这个亮度应该成为0.6,而不是0.4,也就是说人眼感知到的亮度的变化并非线性均匀分布的。问题的关键在于这样的一倍相当于一个亮度级,例如假设0.1、0.2、0.4、0.8是我们定义的四个亮度级别,在0.1和0.2之间人眼只能识别出0.15这个中间级,而虽然0.4到0.8之间的差距更大,这个区间人眼也只能识别出一个颜色)。然而,当我们谈论光的物理亮度,比如光源发射光子的数量的时候,底部(第二行)的灰阶显示出的才是物理世界真实的亮度。如底部的灰阶显示,亮度加倍时返回的也是真实的物理亮度(译注:这里亮度是指光子数量和正相关的亮度,即物理亮度,前面讨论的是人的感知亮度;物理亮度和感知亮度的区别在于,物理亮度基于光子数量,感知亮度基于人的感觉,比如第二个灰阶里亮度0.1的光子数量是0.2的二分之一),但是由于这与我们的眼睛感知亮度不完全一致(对比较暗的颜色变化更敏感),所以它看起来有差异。 因为人眼看到颜色的亮度更倾向于顶部的灰阶,监视器使用的也是一种指数关系(电压的2.2次幂),所以物理亮度通过监视器能够被映射到顶部的非线性亮度;因此看起来效果不错(译注:CRT亮度是是电压的2.2次幂而人眼相当于2次幂,因此CRT这个缺陷正好能满足人的需要)。 @@ -141,4 +141,4 @@ float attenuation = 1.0 / distance; - [cambridgeincolour.com](http://www.cambridgeincolour.com/tutorials/gamma-correction.htm):更多关于gamma和gamma校正的内容。 - [wolfire.com](http://blog.wolfire.com/2010/02/Gamma-correct-lighting): David Rosen关于在渲染领域使用gamma校正的好处。 -- [renderwonk.com](http://renderwonk.com/blog/index.php/archive/adventures-with-gamma-correct-rendering/): 一些额外的实践上的思考。 \ No newline at end of file +- [renderwonk.com](http://renderwonk.com/blog/index.php/archive/adventures-with-gamma-correct-rendering/): 一些额外的实践上的思考。